
RoboPET Team Description Paper

Fabio F. Beltrao and Joao P. M. B. Rocha and Kaue S. Silveira and Lucas F. Zawacki and Dante A. C. Barone

Fig. 1. RoboPET’s Software Architecture

Abstract— This paper presents an overview of the RoboPET
2010 project, a Robocup Small Size League team of Brazilian
undergraduate students of Computer Science, Computer En-
gineering, Mechanical Engineering and Electrical Engineering.
This paper will outline the most important details of both the
robot hardware and the software architecture.

I. INTRODUCTION

RoboPET is a robot soccer team, under the Small Size
F180 category, developed at the Federal University of Rio
Grande do Sul. The team has participated in Robocup 2009
and has, despite some problems, obtained some good results.
In the second semester of 2009 the team has gone through
a major refactoring, specially at the decision system and
mechanical structure of the robot. By the time of the writing
of this paper the new physical robots aren’t ready, but the
project described here is the architecture we’ve designed and
in which we are working now.

II. GENERAL

A. Architecture

We developed a modular architecture (as seen in Fig. 1),
in which each module is a separate executable file. The
modules communicate through UDP sockets, and the seri-
alization/deserialization uses Google Protocol Buffers [1].
This facilitates the development and integration, allowing
the replacement of only some of the modules, e.g. for
earlier versions, without having to recompile or restart the
whole system. Also this greatly encourages the decoupling
of development and allows, if necessary, the system to run
in a distributed manner.

This work was supported by CNPq
F. F. Beltrao and Joao P. M. B. Rocha and K. S. Silveira

and Lucas F. Zawacki and Dante A.C. Barone are with Federal
University of Rio Grande do Sul, {ffbeltrao, jpmbrocha,
kssilveira,lfzawacki, barone}@inf.ufrgs.br

Vision :
Module responsible for processing the field images,
indicating robots and ball positions to the tracker.

Tracker:
Based on a set of information - decision from AI,
objects locations from vision/simulator and physi-
cal conditions feedback from the robots encoders
- does the filtering of those information, aiming
to determine the current game state with greater
accuracy.

Simulator:
Receives the actions which would otherwise be sent
to the robots via radio, simulates the results of those
actions and sends the new perceived world state,
otherwise sent by the Vision, to the Tracker. This
perceived world state may intentionally include
some error in order to also simulate the errors in
the perception.

GUI :
Used primarily for easier and faster debugging.
Figure 2 shows a screenshot of the GUI.

Radio :
Module responsible for communicating to the
robots the actions they must take, and sending back
to the tracker physical information about the robot
state.

III. SOFTWARE

A. Vision

SSL Vision [2] is being used, according to the RoboCup
rules.

Development of the Extended Kalman Filter [3], to per-
form more accurate object tracking, has been postponed in
order to focus on the Artificial Intelligence module.

B. Artificial Intelligence

The Lua programming language [4] is used for the
specification of agents, together with C++. Lua, being a
interpreted language, allows us to change these specifications
without having to recompile or restart the program. Another
advantage is that the code is less bureaucratic than C++’s,
which facilitates maintenance and early contributions by
new members of the group.

Our AI architecture tries to abstract the many nested
condition tests that are inherent to decision making by
utilizing state machines. Each state represents an action to
be taken and each transition can lead to another state or to a
new machine. Thus the decisions are made by “navigating“



through state machines in an hierarchical manner, where the
current state of the first machine leads to the second, the
second leads to a third, and so on until reaching the lowest
level, which determine the action of each robot.

The team is priorizing an approach that separates the de-
cisions in two levels: the upper one being purely declarative
and consisting of state machine specification, and the lower
one being the actual code that implements the actions and
transitions. The state machines are specified in the HiSMaS
language [10], a language developed by the group which
draws inspiration from XABSL [6] and is highly focused
in being simple and letting the complicated code be done
efficiently in the host language. This approach turned out to
be very advantageous because it allows high reuse of code
and a greater clarity.

C. Simulation

The simulator is a work in progress. Our intent is to
test a handful of components of our architecture using a
simulation library called Box2D [12]. This simple physics
library is designed for game development - as said by its
developers - and it allows us to simulate colliding bodies,
acceleration, inertia, friction, angular forces, kicking and
dribbling.

D. Techniques

We implemented the A* [7] and Rapidly Exploring
Random Trees (RRT) path-planning algorithms [5], which
are already consolidated in the literature. As soon as we
master these two very distinct techniques, we plan to
implement more advanced algorithms, such as the D* [8]
and the ERRT (Extended RRT) [9], which take in account
the environmental dynamism of a robots soccer game.

E. Graphical User Interface

We have developed a GUI (Graphical User Interface),
using GTK, which shows graphically information sent by
the AI modules, like players’ position, angle, and the future
position the robot desires to go, as well as ball’s position.
Also, we use the GUI to test the different path-planning
algorithms with real game situations, calculating paths and
visualizing it in the field.
In the future our GUI will be extended with record logs of
the games for better debugging, allowing us to replay and
pause them at any time and visualize the AI decisions.

IV. HARDWARE

A. Electronics

Due to the new DC-brushless motor - Maxon EC-flat 45 -
and the desire of having a faster and more efficient hardware
able to control the motor velocity and provide a feedback, all
the electronics of the robot have been redesigned. With the
goal of creating a modular electronics to facilitate possible

Fig. 2. GUI Screenshot

repairs (in case of a hardware failure), the hardware was di-
vided in four parts: Kickerboard, Dribblerboard, Driverboard
and Motherboard.

Kickerboard:
The Kickerboard is responsible for the robot kick,
i.e., it communicates - serially - with the Moth-
erboard, receiving the kick data and, thereby, ac-
tivates the solenoids accordingly. To activate the
solenoid and to make the ball reach a speed of
6 m/s, it’s necessary to elevate the 18,5V tension
provided by the battery to 250V - using, for this,
two capacitors of 1500uF in parallel and a DC-
DC converter (Boost). Actually the velocity can be
greater than that, but it depends on the electrical
and mechanical characteristics of the solenoid.

Driverboard:
The Driverboard is responsible for controling the
motor spin. The four DriverBoards - one for each
wheel’s motor - are connected to the Motherboard
and they receive the speed each motor must de-
velop. In addition to generate the PWM signals to
the brushless motors - using the PIC 18F2455 -
this board also receives the signal of each motor
encoder to provide a feedback of the velocity
developed. The encoder was built in laboratory
with a simple system utilizing infrared emitters and
infrared receptors that generates 1024 pulses per
wheel rotation.

Dribblerboard:
Similar to the Driverboard, the Dribblerboard con-
trols the robot’s dribbling system. The infrared
sensors - placed in the robot chassis to identify the
ball’s presence in front of the mechanical dribbling
system - are connected to this board. When the ball
is just in front of the robot, the board activates the
dribbler motor. No encoder system was coupled
in this board, because we think that there is no
need for that much precision for the dribbling
system. Besides, this board communicates with the
Motherboard, signalizing the ball’s presence.

Motherboard:



Fig. 3. Electronics Architecture

The Motherboard is responsible for the commu-
nication - through radio - of the robots with the
main server. The radio was changed to the 2.4GHz
transceiver TRW-24G, that helped easing the in-
terference problems faced by the old module. This
board receives the displacement, the dribble and the
kick vectors and returns the real speed, the ball’s
presence in front of the robot and the charge level
of the batteries.
It’s through this board that all the commitments
of the robot are organized. The communication
with the other boards is done using both parallel
and serial protocols, depending on the quantity of
information to be transmitted.

Batteries:
The energy provided to the motors and to the kick
system comes from a 18,5V LiPo battery. Besides,
the robot has a 7,4V LiPo battery, with 2400mAh,
to feed each board.

V. MECHANICAL DESIGN

The Mechanics Group is responsible for developing all
physical features of the robots. These features are the chassis,
the wheels, the motors and the dribbling/kicking mecha-
nisms. These devices are controlled by the Decision System,
and the communication between them is made through radio
waves and processed by an electronic board. The current
architecture of our robot is shown on Figure 3.

This section describes the mechanical system of the
RoboPET, which will be used at LARC 2010. Until the
date of the competition the new brushless motors will not
be available due to problems in importation, so we are
going to use a combination of the old components and the
new architeture. It includes a 3-wheeled robot with brush
motors and without encoders. Despite these problems the
architecture will not be modified, thus the mechanics shall
use what modules are already done. Figure 4 shows an
isometric view of the robot.

This system is divided into the following sub-systems:
driver, structure and dribbling, kicking, calibrating and future
objectives.

A. Driver, Structure and Dribbling Systems

The robot is mounted with three omni-directional wheels.
Initially, we made only the dribble mechanism, with a spongy

Fig. 4. Isometric view of the robot

cylinder that holds the ball by rotating, due to the connection
with a 9V motor. This mechanism is able to rotate both
clockwise and counterclockwise: in one direction, it only
catches the ball and keeps its possession; on the other, it
pulls the ball away, like a kicker, only with a very low speed,
far from the desired 10 m/s. The dribble mechanism consists
of three gears: one gear on the motor, another in the spongy
cylinder axis and a middle gear to connect the others.

B. Kicking System

Seeking to expand the range of kicking possibilities
through a combination of vectors in y and z, we developed
a mechanical system capable of operating both solenoids at
the same time. Thus, we can combine forces in y - coming
from the main solenoid and flat - and z - coming only from
the flat - defined by the intelligence and executed by the
electronics of the kick to improve possible trajectories for
the ball.

C. Calibration

Before any match, the robots are submitted to accelera-
tion and a maximum speed test. These tests calibrate and
enumerate our robots. The calibration is very simple: each
robot moves through a line, with maximum speed in two
motors, one clockwise and the other counterclockwise, while
the third motor stays idle. By doing this, we are able to
calculate the linear acceleration and the maximum speed
of each particular robot. At this point, we also want to
calculate the angular acceleration and the speed. These data
are calculated by submitting all the motors of each robot
to the maximum speed (all motors rotating clockwise or all
motors rotating counterclockwise). The calibration is also
used by the Motor Speed Calculator. Basically, it receives
vectors generated by the Decision System and converts them
into information related to the speed of each motor.

D. Future Objectives

Even though our robot is able to execute passes and
kicks, we consider that we haven’t achieved a competitive
performance yet. In order to reach this objective, we need to



make some changes, which will be described in this section.
First of all, we need to implement a more efficient kicking
device, since ours is just a prototype. Also, the dribble
mechanism will be improved by replacing the three gear
system to a dual gear system, using a more robust motor and
a more appropriate dribbler cylinder. Finally, a 4-wheeled
robot is intended to be developed soon. This change does not
modify the calculations made on the calibration step, because
all the formulae can be simply extended, thus preserving the
calibration process.

VI. CONCLUSION

This paper gave an overview of RoboPET 2010 Team,
which is not yet finished, but is under heavy development.
The new physical robots as described here shall be complete
by October 2010. Since our main problems on last years
Robocup were our robot motors and radio, we hope we’ll
have a better performance on the next national and interna-
tional competitions once the new robots are done.

REFERENCES

[1] Google Protocol Buffers, http://code.google.com/apis/protocolbuffers/
[2] Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-

Vision: The Shared Vision System for the RoboCup Small Size League.
In: Proceedings of the RoboCup Symposium 2009 (2009)

[3] Cuevas, E., Zaldivarl, D., Rojasl, R.: Kalman filter for vision tracking
[4] Ierusalimschy, R., de Figueiredo, L. H., Celes, W.: Lua - an extensible

extension language. Software: Practice & Experience 26 #6 (1996)
635652.

[5] Bruce, J.R.: Real-Time Motion Planning and Safe Navigation in
Dynamic Multi-Robot Environments. PhD thesis, Carnegie Mellon
University (Dec 2006)

[6] Lotzsch, M., Risler M., Jungel M.: XABSL - A Pragmatic Approach
to Behavior Engineering. In: Proceedings of IEEE/RSJ International
Conference of Intelligent Robots and Systems (IROS) (2006)

[7] Hart, P. E., Nilsson, N. J., Raphael B.: A formal basis for the
heuristics determination of minimum cost paths. In: IEEE Transactions
on Systems Science and Cybernetics, SSC-4, pg. 100-107. (1998)

[8] Anthony, S.: Optimal and Efficient Path Planning for Partially-Known
Environments. In: Proceedings of the International Conference on
Robotics and Automation (1994)

[9] Lavalle, S. M.: Rapidly-Exploring Random Trees: A New Tool for Path
Planning (1998)

[10] Silveira, K. S.: Hierarchical State Machine Specification (2010),
http://hismas.googlecode.com

[11] The GTK+ Project, http://www.gtk.org/
[12] Box2D Physics Engine, http://www.box2d.org/


