

Abstract—In this paper we present an overview of the
Bochica 2010 team, from universities Javeriana, Andes and
Norte of Colombia. This team participates in the RoboCup
Small Size League. The overview describes both the robot
hardware and the general software architecture of our team.
The main characteristics are on the one hand, concerning the
hardware, an omni-directional three-wheeled based platform
with dribbler and kicker, and on the other hand, concerning the
software, a multi-agent layered architecture MRCC to control
the multi-player system which depends on an external global
vision system as sensor.

I. INTRODUCTION
OCHICA is the first version team of Small Size F180

robot soccer league [1][2] developed as a joint effort of
researchers at the universities Javeriana, Andes and Norte
from Colombia.This paper will describe in section II the
robot’s electronic and mechanic aspects. Section III
introduces the Multi-Resolution Cooperation Control
arquitecture that supports the multi-agent platform to define
the motions of the robots. Finally, section IV presents the
conclusions of the work made by the join team.

II. ROBOT HARDWARE
A. Robot’s Electronic
The electronic components used in the project were entirely
conceived and developed at Universidad Javeriana. The
main requirements concern the robot movement control, the
wireless communication component and the sensor system.
To fulfill those requirements, the team decided to work with
an integrated IDE and a fully tested compiler. The physical
layout of the project’s electronic is defined by a logical
structure in which the processing module is separated from
the power module (figure 1). The first module corresponds to
the brain of the robot per se, where the microprocessor unit,
a regulated voltage source, several communication ports, and
some peripherals are located. The regulated voltage source

Manuscript received September 10, 2010. This work was supported in

part by the Colombia government under the COLCIENCIAS projects
Agentes Coperativos.

E. Gonzalez, A.S. Miranda, M. Manrique, C. Otalora, J.S. Figueredo
and R. Puerta are with the Pontificia Universidad Javeriana, Bogotá,
Colombia (e-mail: {egonzal, alvaro.miranda, smanriq, camilo.otalora,
jfigueredo, rpuerta}@javeriana.edu.co).

F. De la Rosa, C.F. Rodríguez, J. Angel and Y. Arévalo are with the
Universidad de los Andes, Bogotá, Colombia (e-mail: {fde, crodrigu, jul-
ange, yf.arevalo2026}@ uniandes.edu.co).

provides the electronic card with the ability to be plugged
directly to the batteries of the robot.
As the heart of the processing module, a dsPIC 30F6010A,
has been selected. Some of the characteristics that made it a
very suitable choice for the project are:
- The availability of an RTOS, which is well suited to
implement an event-oriented real time control.
- An efficient C compiler is available, which reduces the
development time.
- This device has enough peripherals and memory to satisfy
the requirements of the project, and enough space in memory
to handle future expansions.
- The compiler includes some libraries for signal
processing, giving the ability to embed in the robot some
sensor information processing.
The second electronic card incorporates the power module
used to control the robot’s motors. Each motor has a driver
and is controlled by a PWM signal generated at the
processing module of the robot. Both modules were designed
with the same dimensions, to assemble them together, as
seen in Figure 1. This arrangement allows placing in a small
footprint all the electronics of the robot.
The embedded software is based on the Free RTOS
operating system, which is the heart of the robot control. The
considerations for the use of an RTOS, instead of a more
simpler structural schema, responds to the idea of an scalable
system that provides, in the future, the capability to expand
the robot’s abilities without complex adaptations of the
embedded software. In addition, the current software was
written in terms of data types and structures defined by an
intermediate layer of the used RTOS.

Figure 1. Robot´s electronic control board assembled

along the power board.

Bochica 2010 - Team Description
E. Gonzalez1, F. De la Rosa2, A. S. Miranda1, C. F. Rodríguez2, M. Manrique1, C. Otalora1,

J. Angel2, Y. Arévalo 2, J. S. Figueredo1 and R. Puerta1
1Pontificia Universidad Javeriana, Bogotá, Colombia

2

B

Universidad de los Andes, Bogotá, Colombia

The hardware portability of the current software is increased
by this approach, and makes it the most important advantage
over other structural software approaches that were available
for the project. Even though the learning curve of an RTOS
is steeper than other options with simpler structural
approaches to write embedded code, the initial time price
paid in the training of an engineer is rapidly recovered by the
adaptability that such approach generates towards the
development of new tasks and software for the project.

B. Robot’s Mechanical Structure
The robots are three wheeled holonomic platforms driven by
DC motors. Energy is provided by AA batteries. They also
have one dribbling mechanism based on a roller and a
shooting mechanism based on a solenoid.
The base and the top of the structure is formed by two
stainless steel sheets, separated by three columns (C folded
SS sheets). This structure generates room for the motor
gears, the dribbling, and the shooting devices. Each motor is
attached to a column and has a single Swedish wheel. The
motor gears (HSIANG HN-GH12-1634TR) give 190 rpm at
10 V, providing the robot with a maximum advance speed of
0.45 m/s.
The shooting mechanism [5] is essentially a solenoid driven
by a voltage elevation circuit. The core of the solenoid is
constructed in two materials: steel and aluminum. It is
mounted below the top sheet at the center of the robot. The
rod of the solenoid is extended by a L-shaped bar, needed for
hit the ball. Figures 2 and 3 show a model of this mechanism
and the CAD model shows the housing of the solenoid is
showed in green.
Additionally, each robot has a dribbling mechanism. It is
mounted in front of the robot, between two columns. It is
composed by a housing frame for a small DC motor and a
roller coupled by gears. This mechanism is activated when
the ball is detected by a pair of infrared sensors located on
each side of the frame. The roller is a segment of flexible
hose made off rubber. The device provides a backspin to the
ball at 3000 rpm.
Battery holders, each for four AA size batteries, are placed
in the rear of the robot figure 2. The Batteries also provide
weight balance to the robot. The robot weight is 1.8 kg, its
total height is 135 mm and 180 mm of diameter.

Figure 2. Test robots. Left, Dribbling system. Right Final robot

Figure 3. CAD view of the model robot.

The electronic cards are placed under the top part of the
metallic structure of the robot, in the green card beneath the
top, figure 3.

III. SOFTWARE ARCHITECTURE
The team software architecture is based on a multi-agent

layered architecture (MRCC) [3], implemented over the
multi-agent platform BESA [4], where several cooperative
actions are defined and compete to be executed. Each
cooperative action has an objective and its definition
depends on different roles executed by the robot players.

A. MRCC Architecture
The conceptual model of Multi-Resolution Cooperation

Control (MRCC) proposes that the cooperation control
architecture that is formed by a hierarchy of layers, each
layer deals with goals of different abstraction levels. For the
case of robotic soccer, the MRCC that is composed by 4
layers appears as a complete solution. See Figure 4.

1) System Layer
It is responsible for the decisions of the highest degree of

abstraction [3], where the global team goals are considered.
It sends parametric influences to the lower layers; it is
responsible for the general composition and the structure of
the spatial regions of the formation level; it can also give
more preference to some cooperative actions depending on
the state of the team in relation to its goals. This layer can be
seen as the coach of the team that takes strategic decisions.

1) Formation Layer
It manages a set of spatial regions in which actions take

place; for each region a software agent aims to achieve a set
of local goals. Robots can be assigned dynamically by a
negotiation mechanism between regions as the goals of a
region are not fulfilled. Inside a region, robots assume
structural roles, which determine restrictions in the
movement of a robot and also individual goals to
accomplish.

Figure 4. MRCC Cooperative Agent Architecture

A structural role can be seen as a default role, assigned

only when there are no opportunities to participate in a
cooperative action.

2) Micro-social Layer
It is charged of the detection of opportunities to execute

cooperative actions. Each robot includes a component that
constantly monitors if the preconditions of any of the
available cooperative actions are true. As an opportunity is
detected, a negotiation protocol takes place between the
concerned robots. If the negotiation succeeds, the action is
executed by assigning cooperative roles to them. In figure 4,
the internal architecture of a cooperative agent as proposed
by the MRCC approach is shown.

3) Agent Layer
At this layer all the decisions taken at the formation and

micro-social layers are transformed in actions performed by
each individual agent according to the context and role
assigned. Thus, each cooperative action of the micro-social
layer is carried out according to a number of roles that are
assumed by a specific robot in a dynamic way. The
appropriate role assumed by an agent not only depends on
the opportunities, the location and its structural role within
the system, but also depends on the characteristics and
abilities of the robot. If an agent is not involved in the
execution of a cooperative action, its actions are guided by
the structural role assigned by the formation level.

B. Role Concept
A role is a set of goals, skills and resources that enable an

agent to perform specific tasks within the framework of
collaborative action [3]. Then, a role can be defined within
our model as a set of elements (type of agent,
responsibilities, skills, context and resources), assigned to a
robot which allow to meet one or more individual goals,
which are aimed to support the objectives of the team. In the
4-layers model, there are 2 different types of roles within the
system, each one associated with a specific aspect of the
model, among them are:

Structural Role: According to Kendal defined in [6] and
[7], and over the formation level, a structuring role is a set of
defined characteristics to meet specific needs within a
system. Among these needs, in the case of the formation
layer, compliance with responsibilities of a spatial region.
For instance, a robot can get assigned the role of central
defender within the defensive zone.

Cooperative Role: The cooperative role is defined as the
set of guidelines to be assigned to the agent to accomplish
with part of the goals involved in the achievement of a
cooperative action. For instance, a robot can get assigned the
role of receiver within a pass cooperative action.

C. Cooperative Actions
A cooperative action aims to fulfill a particular goal by a

reduced group of agents by detecting when a cooperation
opportunity is present.

Once an opportunity is detected, a cooperative strategy is
applied, which involves specialized negotiation mechanisms
and also action preemption control. In general, a cooperative
strategy includes the following components: opportunity
detection, negotiation protocol, preemption mechanism,
monitoring and rating functions.

The general internal architecture that is used to implement
MRCC based agents was described in a precedent paper [3].
The key elements of this architecture that allows
implementing a cooperative action are the following.

Matching: it measures the similarity between the ideal and
the current situations. A situation is defined from factors that
should be considered in the cooperative action, such as
object/agent positions, lengths, angles, etc.

Mapping: it makes all the decisions and calculations
concerning the necessary actions that should be
accomplished in order to reach the goal associated to a
specific role.

Parameters: these are a set of input values that allow
specifying the characteristics of matching and mapping
functions. Thus, these parameters allow reusing the code of a
cooperative action to achieve different goals.

Role: in practice a role is composed of mapping and
matching functions and their parameters. The conjunction of
these elements is used by the opportunistic detection
mechanism and the decision component associated to a role.

Cooperative action: it aims to define the sets of roles that
must participate to accomplish an action that involves
several agents; the role’s matching is used to calculate if the
cooperative action is suitable for the current situation or not.

Based on the above definitions, the process to create a
new cooperative action includes the following steps:

• To define the system’s goals, so all the cooperative
actions that will be defined in the system has to contribute to
reach these goals.

• To define the action’s objective, this has to be aligned
with the system’s goals.

• To define all the roles needed in the action, as well as
their matching and the mapping functions.

• To identify how to calculate the cooperative action’s
matching, using the matching of each of its associated roles.

• To try, if possible, to reuse precedent roles, matching
and mapping functions that already exist.

D. Robot Soccer Actions
In our robot soccer team we have implemented a set of

multi-agent and mono-agent cooperative actions under the
MRCC architecture:

Direct pass to teammate (multi-robot offensive action):
the player controlling the ball makes a pass in direction of a
teammate.

Indirect pass to goal (multi-robot offensive action): the
player controlling the ball makes a pass in direction of an
estimated position where a teammate must arrive to shoot to
the opponent’s goal.

Delta formation (multi-robot defensive action): the
goalkeeper and two players define a triangle formation which
follows the ball; the is to make obstruction to prevent shots
to the goal.

Dribble (mono-robot offensive action): the player
controlling the ball moves it from one point to other.

Dribble and “self-pass” (mono-robot offensive action):
the player controlling the ball releases it after a predefined
distance toward the near front; the idea is to try for regain
possession of the ball in the next action.

Shoot to goal (mono-robot offensive action): the player
controlling the ball shoots it to the opponent’s goal.

Approach to ball (mono-robot defensive action): a player
without the ball gets close to the ball.

IV. CONCLUSION
As far as we know this is one of the few Robocup teams that
work entirely following on a real multi-agent approach. Also,
Bochica is the first F180 team that is completely built in
Colombia, giving the participating universities the know-how
to lead the process of developing more new Robocup teams.

ACKNOWLEDGMENT
This work is product of the Cooperative Agents projects:

“Cooperación en Sistemas MultiAgentes Aplicada a
Robótica Móvil” and “Robótica Cooperativa Basada en
Agentes Heterogéneos Aplicada a Educación en
Tecnología”. Projects financed by the government of
Colombia through COLCIENCIAS with the participation of
Universidad Javeriana, Universidad de los Andes, Maloka
and Universidad del Norte. The authors thank the students
and colleagues that have contributed to the development and
testing of the MRCC architecture and Bochica platform.

REFERENCES
[1] The Robocup Federation [Online], Available:

http://www.robocup.org/
[2] Robocup Small Size Robot League [Online], Available: http://small-

size.informatik.uni-bremen.de/
[3] Gonzalez, E.; Perez, A.; Cruz, J. & Bustacara, C. (2007, November).

MRCC: A Multi-Resolution Cooperative Control Agent Architecture.
Proceedings of IEEE/WIC/ACM Intelligent Agent Technology (IAT),
pp. 391 - 394, San Francisco – USA.

[4] González, E.; Avila, J. & Bustacara, C. (2003, June). BESA:
Behavior-oriented, Event-driven and Social-based Agent Framework.
International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA, pp. 1033-1039, 2003.

[5] Rojas Sandoval J., Diseño y construcción de los dispositivos de
“Dribbling” y “Shooting” para un robot futbolista. Universidad de los
Andes, Bogotá-Colombia, 2010.

[6] Kendall, E.A. (1998). Agent Roles and Aspects, In: Lecture Notes in
Computer Science - Workshop on Aspect Oriented Programming –
ECOOP 1998, Goos, G.; Hartmanis, J. & van Leeuwen, J., (Ed.), Vol.
1543, pp. 431-432, Springer, ISBN 978-3-540-65460-5.

[7] Kendall, E.A. (2000, April). Role Modeling for Agent System
Analysis, Design, and Implementation. IEEE Concurrency, Vol. 8,
No. 2, 2000, pp. 34-41, ISSN 1092-3063.

http://www.robocup.org/�
http://small-size.informatik.uni-bremen.de/�
http://small-size.informatik.uni-bremen.de/�

	I. INTRODUCTION
	II. Robot Hardware
	A. Robot’s Electronic
	B. Robot’s Mechanical Structure

	The electronic cards are placed under the top part of the metallic structure of the robot, in the green card beneath the top, figure 3.
	III. Software Architecture
	A. MRCC Architecture
	1) System Layer
	1) Formation Layer
	2) Micro-social Layer
	3) Agent Layer

	B. Role Concept
	C. Cooperative Actions
	D. Robot Soccer Actions

	IV. Conclusion

