Epicenter Team Description Paper

Daniel Epstein and Ana L. C. Bazzan
Instituto de Informatica - Universidade Federal do Rio Grande do Sul
Caixa Postal 15.064, CEP 91501-970, Porto Alegre, RS, Brasil
{depstein;bazzan } @inf.ufrgs.br

Abstract—1In this paper we describe the functionality of
the Robocup Rescue agents developed by Epicenter Team, at
Universidade Federal do Rio Grande do Sul. We will describe
which strategy each of the three type of agents will use and will
focus on the way those agents plan their path along the maps.
Furthermore, we will describe how we use the center stations
to distribute knowledge among agents and how each type of
agent decides which task to do first.

I. INTRODUCTION

In this short-paper we propose a decentralized approach
where the agents use the communication to have a better
view of the environment. A path planning approach based on
wave propagation over a graph structure that represents the
environment topology is also applied. This graph has edges
that represent the avenues and nodes that are associated to
intersection of avenues and hotspots.

This paper is organized as follows: Section II describes
communication among agents and centrals; Section III de-
scribes the proposed method of path planning; Section IV
describes the method by which agents select their tasks;
and in Section V we present some conclusions and possible
working directions.

II. COMMUNICATION

Given the need of several message types between the
agents, we have defined a communication protocol, seen
in Table I. Figure 1 shows the agents as rectangles and
the messages are represented as arrows. Each message type
indicates the message contents. Due the limitation in the
radio communication of the simulator, this protocol was
implemented using a byte code in order to reduce the size
of the messages (limited to 256 bytes).

Messages of type fire and clear are exchanged be-
tween the Fire Brigade (FB) and the Fire Station (FS) and
are used to send lists of buildings on fire and cleared,
respectively. The Fire Brigade (FB) and the Fire Station
(FS) agents use the messages of type buried and saved
to share the information about buried and saved civilians,
respectively. When the FB and Ambulance Team (AT) are
blocked they send the blocked message to their respective
stations. Using the information received in the blocked
messages, the messages of type blockedList are built up.
This kind of message is only used by the stations, where the
Fire Station and Ambulance Center send the list of blocked
agents to the Police Office (PO), and the PO sends to the
Police Force (PF) agents.

All those messages are important to expand the agents
perception and to remove the finished tasks from the agent’s
local list of task. We do not use the direct communication
between agents since they change their positions very fast
and this communication is not as reliable as the radio one.

ITII. PATH PLANNING

Before presenting the path planner, we will introduce some
basic concepts to make the explanation clearer. Consider a
graph G = (V,E) comprised of a set of vertex V and a set
of non-oriented edges F. This graph is connected if there is
a path between any two nodes, i. e., each node is reached by
any other in the graph. As the agent move around the city,
we extract the graph structure from the agent perception.

We consider the city streets as edges and the intersection
of the streets as vertex. The agents use the ¢-neighborhood
of vertex to determine the path to reach a specific position
from its current position. We define an i-neighborhood N;(v)
as the set of vertex that are reached by a path with length ¢
from v, i. e:

Ni(v) = {u € V |d(u,0) = i}

where d(u,v) corresponds to the length of shortest path
between w and v in terms of number of edges, with d(u, v) =
d(v,u).

Initially, the agent determines its position in the graph
and after it propagates a specific value to the other vertex
in its i-neighborhood. For instance, if the agent is at vertex
v, then each vertex u € N, (v), for m = 1,2, ..., stores a
propagated value p,(u) = m. In this case, the value p,(u)
indicates the number of edges that the agent should access
from vertex v to reach the vertex wu, i.e., p,(u) = d(u,v).

Using this method, the recovery of a path is straight-
forward. The agent determines the vertex associated to its
current position v and the goal position, g. The path P C
V is built from the vertex g. This path corresponds to a
sequence of vertices

P= {UOaula cee 7ud(v,g)}

where ug = v, uq(,,4) = g and [P| = d(v, g)+1. Each vertex
w in this path is determined using its propagated value, p,, (u),
from vertex v.

This computation is straightforward, but it may access
unnecessary vertices. For instance, consider a simple case,
where the graph is A-regular (all vertex have the same
degree A). If the goal node is at distance k from the agent

List of Blocked ATs

List of Blocked FBs

Ambulance Center Fire Station Police Office

(AC) (FS) (PO)

Lilst. gf List of List of
Unblock | | Civilians Unblock || gigings blocked
request (Buried and request (On Fire ATs and
Saved FB
' vand Clear) y FBs

Ambulance Team Fire Brigade Police Force

(AT) (FB) (PF)

Fig. 1. Communication between agents and centrals.
TABLE I
MESSAGES EXCHANGED AMONG THE AGENTS.

Sender | Receiver | Message Type Contents

FB FS , . . g

S B fire List with the IDs from the buildings on fire.

II?S IE]SB clear List with the IDs from the cleared buildings.

I;l; I;SC blocked Agent’s own location.

AT AC , . . . s

AC AT buried List with the IDs of the buried civilians.

:g 2,% saved List with the IDs of the saved civilians.

ES PO blockedList | List with the location of the blocked FBs.

AC PO blockedList | List with the location of the blocked ACs.

PO PF blockedList | List with the location of the blocked ACs and FBs.

position, then the method will access successively a number
of nodes of order O(A**1). Furthermore, if an unexpected
event happens during the path execution, the agent must re-
plan the path towards its goal position, without considering
the path already planned.

To solve this problem, we can divide the planning path
in two parts. Instead of planning beginning from the agent
position, it begins from both the agent and the goal positions.
We determine the vertex v and g that are associated to the
current agent position and goal position, respectively. After,
we compute successively

Nl('U)7N1<g)7N2(U)»N2(g)a cee aNm(U)’Nm(g)

until

(N (0) NN (9)) | (Wi (0) N N1 (9))
{u |

The vertex set [

u

Nin(9)) U (Non (0)NNG—1(g)) } contains meeting vertex far
at most |d(v,g)/2| + 1 from both v and g. These vertices
are used to recovery the path from v to g using a similar
procedure as shown previously. The cardinality of set I
indicates the number of candidate paths from v to g.

To compute a path, initially, we choose a vertex x € I
and compute the path Py = {ug,u1,...,uq(v,)} Where
Uy = U, Ug(y,z) = T After, we compute the path P
{wo, w1, ..., waeg,2)} Where wo = g, wg(g») = . So, we
have a path from current agent position v to vertex z and
from goal position g to vertex x, with |Pq| — |P2| < 1.

We join these paths into a wunique path
P ={po,p1,.--,Pd(v,g)}- The vertex from py to Pg(y,q)
corresponds to the path from agent position to meeting
vertex. That is, p; = u;, for ¢ = 0,1,...,d(v,x). Whereas
the vertices from pgey.o)+1 10 Pdcu,g) are associated
to the vertex of the path P, in inverse order, i. e.,
pd(v,m)«H' = wd(g’x),i, for ¢ = 1, 2, ce ,d(g7 x)

The main advantage of this approach is that the number
of accessed vertices is less than the previous approach. For
instance, in a A-regular graph, as considered previously,
the method will access a number of vertices of order
O(ALF/2]+1) Furthermore, it is possible to handle dynamic
events in a more efficient way. For instance, consider that
the agent is following the path and at vertex ¢q € P, it finds
a blockage. If ¢ € P, the agent needs to re-plan a path from
its position g accessing its neighboring

Ni(q), Na(q), ..., Ni(q)

until

Ne(q) NN d(v,g)/2)(9) # 0

In this case, new meeting vertices are determined and
the process is repeated. Observe that the path P, is not
recomputed and, therefore, planning time is saved.

IV. TASK ALLOCATION

We will describe shortly the method implemented by each
agent to select which task to execute first. The method used
is detailed in [1] and we will the same algorithm here. In
[2] there is a comparison between differents task allocations
strategies.

First, we must consider that each agent have a limited
ability to perform a task. Agents on different area of the
map have different potential to perform a given task for
many reasons. One could think that their ability would be
proportional to the distance between the agent and the task.
But there are also other factors that must be considerered.
We will now explain what factors were considered for each
type of agent in order to allocate a task to them.

A. Fire Brigade (FB)

In order for a fire brigade to perform properly a given
task, he cannot be very far from it, otherwise the building
would collapse before he could reach it. Also, the building
he would attack must be important for the final score. So
we consider that the competence of a fire brigade agent is
proportional to his distance to the building on fire and to the
size of this building. The larger building will have priority
over the smaller one and the closest one will have priority
over the rest. By doing this selection, we try to reach the
biggest amount of building and focus on the most important
ones.

B. Police Force (PF)

The PF don’t have any direct influence on the final score,
once the number of clear roads is not taken in consideration.
However, it must perform his tasks properly so that the other
agents can move freely through the map. We consider that
the most important property to consider are the distance from
a PF to the road he intend to unblock and the size of this
blockade. We focus on unblocking as many roads as we can,
instead of unblocking one big road.The reason is that we
intend to ensure that a path between two points will exist,
even if that path is not a direct line.

C. Ambulance Team (AT)

Ambulances have the task to save lives. Every moment an
AT is moving, it is time wasted that it could be saving lives.
So it is very important to consider the position of an AT
before choosing what task to perform first. The other factor
we choose to consider is the HP of the civilian. We choose
to save as many lives as possible, even if all the civilian are
badly injured.

V. CONCLUSIONS AND FUTURE WORKS

This TDP has described the strategy used by EPICENTER
team at the Latin American Robotics Competition 2010. Al-
though the agents performance was satisfactory, its important
to notice that there are a few issues to be reviewed. For
example, there is no communication between fire brigades
and ambulance teams. This communication could be used so
civilians who are near a burning building could be saved first
or maybe direct fire brigades to an area with many civilians
buried.

The path planning proposed could also be improved by
combining the knowledge multiple agents (i.e. when two
agents are going to the same part of the scenario it is possible
to compute the path only once and inform it to the other
agent).

Finally, using a different task allocation method could be
more effective in some cases. A mix of techniques or even a
mix of thresholds could be used to improve the final score.

REFERENCES

[1] P. R. Jr. Ferreira and F. Boffo and A. L. C. Bazzan. Using Swarm-
GAP for Distributed Task Allocation in Complex Scenarios. Massively
Multiagent Systems. Springer, 2008. n.5043, p.107121. (Lecture Notes
in Artificial Intelligence).

[2] P.R.Jr. Ferreira and F. Santos and A. L. C. Bazzan and D. Epstein and
S. J. Waskow. Robocup Rescue as Multiagent Task Allocation among
Teams: experiments with task interdependencies. aama. vol.20. 3. May,
2010. 421-443.

